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Abstract. A continuum model of transportation network is considered in presence of capacity con-
straints on the flow. The equilibrium conditions are expressed in terms of a Variational Inequality for
which an existence theorem is provided.
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1. Introduction

In ref. [9] the author considers a continuum model of transportation network and
characterizes the equilibrium conditions by means of the following Variational
Inequality:

Find u∈�such that
∫
�
c�x�u�x���v�x�−u�x��dx�0 ∀v∈�� (1)

where
�=	v=�����2� 
v1�x��0� v2�x��0�div v+ t�x�=0�

v1���=1�x�� v2���=2�x���

� is a simply connected bounded domain in �2 of generic point x=�x1�x2�,
with Lipschitz boundary ��� v�x�=�v1�x��v2�x�� represents the unknown flow
at each point x∈� and the components v1�x�� v2�x� are the traffic density
through a neighbourhood of x in the directions of the increasing axes x1 and
x2� =�1�2�∈L2�����2� is the fixed flow on the boundary �� (or on a
part of ��), c�x�u�x��=�c1�x�u�x���c2�x�u�x��� is the ‘personal cost’ whose
components c1�x�u�x��� c2�x�u�x�� represent the travel cost along the axes x1 and
x2 respectively. It is assumed

(i) c�x�u� 
�×�2→�2 is a Carathéodory function such that

	c�x�u�	�2 ���x�+	u	�2 a. e. in��u∈�2 (2)

with ��x�∈L2���.
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�����2� is the functional space defined in the following way:

�����2�=	v∈L2����2� 
div∈L2����

endowed with the norm:

	u	2�����2�
=
∫
�
	u	2dx+

∫
�
�div v�2dx�

The equilibrium condition is the following:

DEFINITION 1. u�x�∈� is an equilibrium distribution flow if there exists a
potential �∈H 1��� such that(

ci�x�u�x��−
��

�xi

)
ui�x�=0 i=1�2�a. e. in� (3)

ci�x�u�x��−
��

�xi
�0 i=1�2�a. e. in�� (4)

� measures the cost occurred when a network user travels from the point x to the
boundary �� using the cheapest possible path.

In [9] it is proved the following equivalence result:

THEOREM 1. u∈� is an equilibrium distribution according to definition 1 if
and only if∫

�
c�x�u�x���v�x�−u�x��dx�0 ∀v∈��

As suggested by some authors (see [5]), the aim of this paper is to consider
capacity constraints on the flow:

0�s�x��v�x��z�x�a. e. in� (5)

with s�x�=�s1�x��s2�x��� z�x�=�z1�x��z2�x�� such that
�s1�x��z2�x����z1�x��s2�x��∈�� (6)

Now the set of feasible flows becomes

�̃=	v�x�=�����2� 
 s�x��v�x��z�x�a. e. in�� div v�x�+t�x�=0

v1���=1�x�� v2���=2�x���

In virtue of (6) �̃ is nonempty and the new formulation of the equilibrium condi-
tions is the following:
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DEFINITION 2. u�x�∈�̃ is an equilibrium distribution flow if there exists a
potential �∈H 1��� such that

if si�x�<ui�x��zi�x�� then ci�x�u�x��=
��

�xi
� (7)

if ui�x�=si�x�� then ci�x�u�x���
��

�xi
� (8)

if ui�x�=zi�x�� then ci�x�u�x���
��

�xi
� (9)

Under the assumption �i� we shall prove the following:

THEOREM 2. u∈�̃ is an equilibrium distribution according with definition 2 if
and only if∫

�
c�x�u�x���v�x�−u�x��dx�0 ∀v�x�∈�̃� (10)

Moreover we provide an existence result for the Variational Inequality (10). In fact,
we shall prove the following

THEOREM 3. Assume that condition �i� holds and that the following monoton-
icity condition holds:

(ii)
(
c�x�u�−c�x�v�

)
�u−v��0 ∀u�v∈�̃� a. e. in��

Then the Variational Inequality (10) admits solutions.

Theorem 3 ensures the existence of a solution fulfilling the equilibrium conditions
(7)–(9). As it is well known, these conditions provide an equilibrium flow that
follows the so–called ‘user’s optimization’ approach. This equilibrium flow is dif-
ferent from the equilibrium flow obtained minimizing a cost functional. For more
details about these questions we refer to references [4, 5, 7, 8].

2. Proof of Theorem 2.

Let us prove that an equilibrium distribution according to Definition 2 satisfies the
Variational Inequality (10). In fact, setting

�i
�=	x∈�
si�x�<ui�x�<zi�x� a. e. in��

�i
s=	x∈�
si�x�=ui�x�� i=1�2

�i
z=	x∈�
zi�x�=ui�x���
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we have:

∫
�
c�x�u�x���v�x�−u�x��dx

=
∫
�1
�

c1�x�u�x���v1�x�−u1�x��dx+
∫
�1
s

c1�x�u�x���v1�x�−u1�x��dx

+
∫
�1
z

c1�x�u�x���v1�x�−u1�x��dx+
∫
�2
�

c2�x�u�x���v2�x�−u2�x��dx

+
∫
�2
s

c2�x�u�x���v2�x�−u2�x��dx+
∫
�2
z

c2�x�u�x���v2�x�−u2�x��dx

=
∫
�1
�

��

�x1
�v1�x�−u1�x��dx+

∫
�1
s

c1�x�u�x���v1�x�−s1�x��dx

+
∫
�1
z

c1�x�u�x���v1�x�−z1�x��dx+
∫
�2
�

��

�x2
�v2�x�−u2�x��dx

+
∫
�2
s

c2�x�u�x���v2�x�−s2�x��dx+
∫
�2
z

c2�x�u�x���v2�x�−z2�x��dx

�

∫
�1
�

��

�x1
�v1�x�−u1�x��dx+

∫
�1
s

��

�x1
�v1�x�−s1�x��dx

+
∫
�1
z

��

�x1
�v1�x�−z1�x��dx+

∫
�2
�

��

�x2
�v2�x�−u2�x��dx

+
∫
�2
s

��

�x2
�v2�x�−s2�x��dx+

∫
�2
z

��

�x2
�v2�x�−z2�x��dx

=
∫
�

��

�x1
�v1�x�−u1�x��dx+

∫
�

��

�x2
�v2�x�−u2�x��

=
∫
��
�
[
�v1�x�−u1�x��X1+�v2�x�−u2�x��X2

]
dx

−
∫
�
�
(�v1�x�
�x1

+ �v2�x�
�x2

− �u1�x�
�x1

− �u2�x�
�x2

)
dx=0�

from which the assert follows.
Conversely, let us prove that if u∈�̃ is a solution to (10) then u fulfills

definition 2.
Let us consider the function

��v�=
∫
�
c�x�u�x���v�x�−u�x��dx v∈�̃ (11)

where u∈�̃ is a solution to the Variational Inequality (10). The convex set �̃
satisfies the constraint qualification conditions introduced in [1], namely the ‘quasi
relative interior of �̃ non empty’ (see also [6]), which replaces the standard Slater
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condition for the infinite dimensional case. Then, following [3], it is possible to
show the following results.

LEMMA 1. The problem

min
v∈�̃

��v��=��u�=0� (12)

is equivalent to the problem

min
v∈�����2�

sup
����1��1��2��2�∈�∗

{
��v�+

∫
�
��x�

(�v1
�x1

+ �v2
�x2

+t�x�
)
dx+

−
∫
�
�1�x��v1�x�−s1�x��dx−

∫
�
�1�x��z1�x�−v1�x��dx+

−
∫
�
�2�x��v2�x�−s2�x��dx−

∫
�
�2�x��z2�x�−v2�x��dx

}
�

(13)

where

�∗=	����1��1��2��2� 
���i��i∈L2���� ���i��i

�0� i=�1�2a�e� in��

and

�����
2�=	v∈�����2� 
v1���=1� v2���=2��

Let us consider the dual problem:

max
����1��1��2��2�∈�∗

inf
v∈�

[
��v�+

∫
�
��x�

(�v1
�x1

++�v2
�x2

+t�x�
)
dx+

−
∫
�
�1�x��v1�x�−s1�x��dx−

∫
�
�1�x��z1�x�−v1�x��dx−

−
∫
�
�2�x��v2�x�−s2�x��dx−

∫
�
�2�x��z2�x�−v2�x��dx

]
�

(14)

and the problem:

max
�∈ 

� (15)
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where

 =	�∈� 
��v�+
∫
�
��x�

(�v1
�x1

+ �v2
�x2

+t�x�
)
dx+

−
∫
�
�1�x��v1�x�−s1�x��dx−

∫
�
�1�x��z1�x�−v1�x��dx+

−
∫
�
�2�x��v2�x�−s2�x��dx−

∫
�
�2�x��z2�x�−v2�x��dx�

��∀v∈�� ∀����1��1��2��2�∈�∗��

The following result holds.

LEMMA 2. ����1��1��2��2�∈�∗ is a maximal solution to the dual problem
(14) if and only if

�= max
����1��1��2��2�∈�∗

inf
v∈�

[
��v�+

∫
�
��x�

(�v1
�x1

++�v2
�x2

+t�x�
)
dx+

−
∫
�
�1�x��v1�x�−s1�x��dx−

∫
�
�1�x��z1�x�−v1�x��dx−

∫
�
�2�x��v2�x�−s2�x��dx−

∫
�
�2�x��z2�x�−v2�x��dx

]

is a solution to (15).

LEMMA 3. If the primal problem (13) (or (12)) is solvable, then the dual problem
(14) is also solvable and the extremal values of the two problems are equal.

Now let us consider the Lagrangean function

� 
�×�∗→�

defined by setting

��v����1��1��2��2�=��v�+
∫
�
��x�

(�v1
�x1

++�v2
�x2

+t�x�
)
dx+

−
∫
�
�1�x��v1�x�−s1�x��dx−

∫
�
�1�x��z1�x�−v1�x��dx−

−
∫
�
�2�x��v2�x�−s2�x��dx−

∫
�
�2�x��z2�x�−v2�x��dx� (16)

The following result holds true:
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LEMMA 4. A point �u����1��1��2��2�∈�×�∗ is a saddle point of the
Lagrangean function �� that is

��u����1��1��2��2����u����1��1��2��2����v����1��1��2��2�

∀����1��1��2��2�∈�∗� ∀v∈��
if and only if u is a solution o the primal problem, ����1��1��2��2� is a solution
to the dual problem (14) and the extremal values of the two problems are equal.

From Lemma 4 it follows that

��x�
(�u1
�x1

+ �u2
�x2

+t�x�
)
=0⇐⇒��x�t�x�=−�

(�u1�x�
�x1

+ �u2�x�
�x2

)

(17)

�1�x��u1�x�−s1�x��=0� �1�x��z1�x�−u1�x��=0 a. e. in� (18)

�2�x��u2�x�−s2�x��=0� �2�x��z2�x�−u2�x��=0 a. e. in� (19)

Taking into account (17), (18), (19) and the fact that

min
v∈�

��v����1��1��2��2�=��u����1��1��2��2�=0�

using the Gauss formula, we get:!

��v����1��1��2��2�=��v�+
∫
�
�
[��v1−u1�

�x1
+ ��v2−u2�

�x2

]
dx+

−
∫
�
�1�x�"v1�x�−u1�x�#dx+

∫
�
�1�x�"v1�x�−u1�x�#dx+

−
∫
�
�2�x�"v2�x�−u2�x�#dx+

∫
�
�2�x�"v2�x�−u2�x�#dx=

=
∫
�

[
c1�x�u�x��−

��

�x1
−�1+�1

]
�v1−u1�dx+

+
∫
�

[
c2�x�u�x��−

��

�x2
−�2+�2

]
�v2−u2�dx�0 ∀v∈��

Then, choosing in turn v1=u1+� ∀∈���� and v2=u2 and v2=u2±
∀∈���� and v1=u1� we obtain

ci�x�u�x��−
���x�

�xi
−�i�x�+�i�x�=0 a. e. in� i=1�2� (20)

!��/�xi are considered in the distribution sense. However, because ci−�i+�i∈L2���� also
��/�xi will belong to L2����
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From (20), in virtue of (18) and (19), we get, if si�x��ui�x��zi�x��(
ci�x�u�x��−

���x�

�xi

)
�ui�x�−si�x���zi�x�−ui�x��=0 a. e. in� i=1�2

and hence(
ci�x�u�x��−

���x�

�xi

)
=0�

If ui�x�=si�x�� it results from (18) and (19) �i�x�=0 and we get

ci�x�u�x��−
��

�xi
=�i�0�

If ui�x�=zi�x� it results from (18) and (19) �i�x�=0 and we get

ci�x�u�x��−
��

�xi
+�i=0�

Since �i�x��0� it follows ci�x�u�x���
��

�xi
� Then Theorem 2 is completely

proved. �

3. Proof of Theorem 3

Wewill prove the existence result taking into account the following classical exist-
ence Theorem.

THEOREM 4. Let E be a real topological vector space and let �⊆E be convex,
closed, bounded and nonempty. Let C 
�→E∗ be given such that C is monotone
and hemicontinuous along line segments. Then there exists u∈� such that

�C�u��v−u��0 ∀v∈��

Let us set C 
�̃→
(
�����2�

)∗
such that

�C�u��v�=
∫
�
c�x�u�x��v�x�dx ∀u∈�̃� ∀v∈�����2�� (21)

From assumption �ii� it follows
∫
�
�c�x�u�x��−c�c�v�x����u�x�−v�x��dx�0

and hence the operator c is monotone.
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From condition �i�, it follows that for each sequence �n→�� �n� �∈ "0�1#
and ∀u�v∈�̃ it results

lim
n

∫
�
	c�x��nu+�1−�n�v�−c�x��u+�1−��v�	2dx=0

and hence

lim
n

∫
�
c�x��nu+�1−�n�v��v−u�dx=

∫
�
c�x��u+�1−��v��v−u�dx�

namely the hemicontinuity along line segments.
Since �̃ is bounded because

	u	�����2��	z	L2���+	t	L2��� ∀u∈�̃�
the proof of Theorem 3 is completed. �
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